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A new framework is developed to intrinsically analyze sparsely observed
Riemannian functional data. It features four innovative components: a frame-
independent covariance function, a smooth vector bundle termed covariance
vector bundle, a parallel transport and a smooth bundle metric on the covari-
ance vector bundle. The introduced intrinsic covariance function links esti-
mation of covariance structure to smoothing problems that involve raw co-
variance observations derived from sparsely observed Riemannian functional
data, while the covariance vector bundle provides a rigorous mathematical
foundation for formulating such smoothing problems. The parallel transport
and the bundle metric together make it possible to measure fidelity of fit to
the covariance function. They also play a critical role in quantifying the qual-
ity of estimators for the covariance function. As an illustration, based on the
proposed framework, we develop a local linear smoothing estimator for the
covariance function, analyze its theoretical properties and provide numerical
demonstration via simulated and real data sets. The intrinsic feature of the
framework makes it applicable to not only Euclidean submanifolds but also
manifolds without a canonical ambient space.

1. Introduction. Functional data are nowadays commonly encountered in practice and
have been extensively studied in the literature; for instance, see the monographs Ferraty and
Vieu (2006), Hsing and Eubank (2015), Kokoszka and Reimherr (2017), Ramsay and Silver-
man (2005), as well as the survey papers Wang, Chiou and Müller (2016) and Aneiros et al.
(2019), for a comprehensive treatment on functional data analysis. These classic endeavors
study functional data in which functions are real- or vector-valued, and thus are challenged
by data of functions that do not take values in a vector space. Such data emerge increasingly
often, partially due to the rapid development of modern technologies. For example, in the
longitudinal study of diffusion tensors, as the tensor measured at a time point is represented
by a 3 × 3 symmetric positive-definite matrix (SPD), the study results in a collection of SPD-
valued functions. The space of SPD matrices is not a vector space, and in particular, the
usual Euclidean distance on it suffers from the “swelling effect,” which introduces artificial
and undesirable inflation of variability in data analysis (Arsigny et al. (2006/07)). Special-
ized distance functions (Dryden, Koloydenko and Zhou (2009), Pennec, Fillard and Ayache
(2006)) or metrics (Arsigny et al. (2006/07), Lin (2019), Moakher (2005)) are required to
alleviate or completely eliminate the swelling effect. These metrics turn the space of SPD
matrices of a fixed dimension into a nonlinear Riemannian manifold. Data in the form of
Riemannian manifold valued functions are termed Riemannian functional data and modeled
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by Riemannian random processes, which are random processes taking values in Riemannian
manifolds (Lin and Yao (2019)).

Since the mean and covariance functions are two of the most fundamental concepts in
functional data analysis, as many downstream analyses depend on them, it is of particu-
lar importance to generalize them to Riemannian functional data. For the mean function,
the generalized counterpart is the well-established Fréchet mean function that is adopted
in Dai, Lin and Müller (2021), Dai and Müller (2018), Lin and Yao (2019) and is an ex-
tension of Fréchet mean. The concept of Fréchet mean in turn generalizes the usual mean
of random vectors to manifold-valued random elements, and has been studied in depth by
Afsari (2011), Bhattacharya and Patrangenaru (2003), Bhattacharya and Patrangenaru (2005),
Pennec (2019), Schötz (2019). Related to estimation of Fréchet mean function is regression
on manifold-valued nonfunctional data that was investigated by Cornea et al. (2017), Fletcher
(2013), Hinkle, Fletcher and Joshi (2014), Pelletier (2006), Shi et al. (2009), Steinke, Hein
and Schölkopf (2010), and more broadly, on metric-space valued data by Faraway (2014),
Hein (2009), Lin and Müller (2021), Petersen and Müller (2019), among others.

The genuine challenge comes from modeling and estimating the covariance structure. To
tackle nonlinearity of the Riemannian manifold, a strategy commonly employed in the liter-
ature is to transform data from the manifold into tangent spaces via Riemannian logarithmic
maps, and then to model the covariance via the transformed data. Specifically, at each time
point, the associated observations are transformed into the tangent space at the Fréchet mean
at that time point. Although tangent spaces of a manifold are linear spaces, and thus pro-
vide the desired vector structure, there is one issue to resolve: Different tangent spaces are
distinct vector spaces, and thus their tangent vectors are incomparable, but the covariance
involves random tangent vectors from different tangent spaces. More specifically, the value
of the covariance function at a time pair (s, t) involves observations at both s and t , and in
the manifold setting, the observations at these time points are often transformed into tangent
vectors of distinct tangent spaces.

The above issue is especially pronounced for sparsely observed Riemannian functional
data. A common strategy well established in the Euclidean setting for sparse functional data
is to smooth the discrete and noisy raw covariance function (Cai and Yuan (2010), Li and
Hsing (2010), Yao, Müller and Wang (2005), Zhang and Wang (2016)). However, there are
fundamental difficulties in extending this seemingly simple strategy to the manifold setting.
First, as previously mentioned, the covariance function involves tangent vectors from differ-
ent tangent spaces, so that an appropriate definition of covariance between two incomparable
random tangent vectors is in order. Second, for the smoothing strategy to work, the under-
lying covariance function shall possess certain regularity of smoothness, such as continuity
or differentiability. However, it is challenging to define and quantify such regularity for co-
variance of Riemannian functional data. This problem is unique to sparsely observed data;
when data are fully observed or sufficiently dense so that each trajectory can be individually
recovered, the sample covariance operator serves as an estimate for the covariance structure
(Lin and Yao (2019)), which does not require smoothing.

To overcome the above difficulties, in this paper we develop a novel framework to model
and estimate the covariance when Riemannian functional data are sparsely and noisily
recorded. The proposed framework features four innovative components:

• First, an intrinsic covariance function is developed to characterize covariance between ran-
dom tangent vectors from distinct tangent spaces. Such covariance function is invariant
to manifold parameterization, frame selection and embedding, and is made possible by
considering the covariance of two random tangent vectors in different tangent spaces as a
linear operator that maps one tangent space into the other. This covariance function does
not require reference to a frame, and thus is fundamentally different from the covariance
function of coefficients with respect to a frame in Lin and Yao (2019).
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• Second, we construct a novel smooth vector bundle from the manifold, termed covariance
vector bundle, to provide an appropriate mathematical foundation for intrinsic quantifica-
tion of the regularity of the proposed covariance function, such as continuity, differentia-
bility and smoothness. For example, it makes statements like “find a smooth covariance
function that minimizes the mean squared error” sensible. In addition, covariance function
estimation amounts to smoothing data located in a smooth vector bundle. Although there is
a rich literature on smoothing Riemannian manifold-valued data, the study on smoothing
data in a vector bundle is still in its infancy.

• Third, a parallel transport on the covariance vector bundle is developed from the intrinsic
geometry of the manifold, which also induces a covariant derivative on the bundle. The
covariant derivative allows intrinsic definition of derivatives of a function taking values
in the covariance vector bundle. Such derivatives are often needed when one analyzes
theoretical properties of a smoothing procedure. The parallel transport also enables one
to move the raw observations into a common vector space in which classic smoothing
methods may apply.

• Fourth, a smooth bundle metric is constructed and plays an essential role in measuring the
fidelity of fit to data during estimation and quantifying the quality of an estimator. It is
derived from the intrinsic geometry of the underlying Riemannian manifold and utilizes
the Hilbert–Schmidt inner product of linear operators between two potentially different
Hilbert spaces. Such inner product, mathematically well established (e.g., Definition 2.3.3
and Proposition B.0.7 by Prévôt and Röckner (2007)), is less seen in statistics; the common
one is usually for operators that map a Hilbert space into itself.

The intrinsic covariance function and the covariance vector bundle together pave the way
for intrinsically smoothing the observed raw covariance function, while the parallel trans-
port and the bundle metric are critical for developing an estimation procedure for sparsely
observed Riemannian functional data. As an illustration, we propose an estimator for the co-
variance function based on local linear smoothing and establish the pointwise and uniform
convergence rates of the estimator under various designs, while emphasize that other smooth-
ing techniques such as spline smoothing are also applicable. Other contributions include ex-
tending the invariance principle of Lin and Yao (2019) to the sparse design and connecting
holonomy theory to statistics via Lemma 4.1 that might be of independent interest.

Our work is clearly set apart from existing endeavors in the scarce literature that emerge
only in recent years. Su et al. (2014) first represented each trajectory by its normalized ve-
locity curve and then transported the velocity vectors into a common tangent space. Zhang,
Klassen and Srivastava (2018) specifically considered spherical trajectories and developed
a data transformation geared to the spherical geometry, while Dai and Müller (2018), Lin
and Yao (2019) and Dubey and Müller (2020) studied trajectories on a more general man-
ifold or metric space. All of these works assume fully observed functions, and thus require
no smoothing. Dai, Lin and Müller (2021) proposed to smooth the sparsely observed raw
covariance by embedding the manifold into a Euclidean space. This approach of using an
embedding, although making adaption of classic smoothing techniques to the manifold set-
ting straightforward, does not readily apply to manifolds without a canonical embedding.
Moreover, the results and their interpretations may be tied to the chosen embedding; see Sec-
tion 6 of the Supplementary Material (Shao, Lin and Yao (2022)). In contrast, our framework
does not require an embedding, and thus circumvents these drawbacks, though it needs to
overcome drastically elevated technical challenges.

We shall emphasize that, the proposed framework is not to replace explicit parameteriza-
tion in practice, but to make the statistical outcomes invariant to the parameterization and/or
frame adopted in computation. For instance, in Section 5 we demonstrate that the proposed
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method produces identical results under different parameterizations. In particular, the intrin-
sicality featured by our method refers to requiring no embedding, rather than no parameteri-
zation. This makes our framework immediately applicable to manifolds without a canonical
embedding. We demonstrate this feature via the manifold of SPD matrices endowed with the
affine-invariant metric in our simulation studies; see Section 5.

The rest of the paper is organized as follows. In Section 2, we construct the covariance vec-
tor bundle, a parallel transport and a smooth metric on the bundle. In addition, we formulate
the intrinsic concept of covariance function for Riemannian functional data. An estimator for
the covariance function from sparsely observed Riemannian functional data is described in
Section 3, and its theoretical properties are given in Section 4. Simulation studies are placed
in Section 5, followed by an application to longitudinal diffusion tensors in Section 6. All of
the proofs are deferred to an online Supplementary Material (Shao, Lin and Yao (2022)) for
space economy.

2. Covariance vector bundle.

2.1. Preliminaries. We briefly review concepts from Riemannian manifolds that are es-
sential for our development at a high level, while relegate all formal definitions to the Sec-
tion 1 of the Supplementary Material (Shao, Lin and Yao (2022)) and refer readers to the
introductory text by Lee (1997) for further exposition.

Let M be a d-dimensional smooth manifold, roughly speaking, a space that locally resem-
bles Rd and is endowed with a smooth structure. A smooth structure is formally described by
a (maximal) smooth atlas on M, specifically, a collection of pairs (Uα,φα) that are indexed
by an index set J and satisfy the following conditions:

• Each Uα is an open subset of M and
⋃

α∈J Uα =M;
• Each φα is a bijective continuous map between Uα and an open set of Rd ;
• If Uα ∩ Uβ �= ∅, then the transition map φα ◦ φ−1

β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) is
smooth, that is, infinitely differentiable; we say φα and φβ are compatible.

The pair (Uα,φα) or sometimes φα itself is called a chart (or coordinate map). Intuitively, φα

assigns a local coordinate to each point in Uα . Two atlases are compatible if their union is
again an atlas (satisfying the above conditions). An atlas is maximal if it contains any other
atlas compatible with it.

Every point in a d-dimensional manifold is associated with a distinct d-dimensional vector
space, called the tangent space at the point. In addition, any chart (Uα,φα) gives rises to a
basis for the tangent space at each point in Uα , and the basis smoothly varies with the point
with Uα . More generally, one can assign to each tangent space a basis. Such an assignment
is called a frame. Tangent spaces at different points of a manifold are conceptually distinct
spaces, so that their elements, called tangent vectors, are incomparable; only tangent vectors
from the same tangent space are comparable.

A Riemannian manifold is a smooth manifold equipped with a Riemannian metric 〈·, ·〉,
which defines an inner product 〈·, ·〉p on the tangent space TpM at each point p ∈ M, with
the associated norm denoted by ‖v‖p = √〈v, v〉p for v ∈ TpM. The metric, which smoothly
varies with p, induces a distance function dM on M and turns the manifold into a metric
space. A geodesic in a Riemannian manifold is a constant-speed curve of which every suffi-
ciently small segment is the shortest path connecting the endpoints of the segment. At each
point p ∈ M, there is an exponential map Expp that maps tangent vectors at p onto the man-
ifold M. In particular, for each v ∈ TpM, γv(t) := Expp(tv) defines a geodesic. The inverse
of Expp , when it exists, is called the Riemannian logarithmic map at p and denoted by Logp .

In statistical analysis, it is desirable to compare the tangent vectors from different tangent
spaces. To this end, one may transport the tangent vectors into a common tangent space in
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which tangent vectors can be directly compared by vector subtraction. For a Riemannian
manifold, there is a unique (parallel) transport associated with the Riemannian metric and
realized by Levi–Civita connection. In this paper, unless otherwise stated, parallel transport
is performed along shortest geodesics between two points y and z, denoted by Pz

y , which
moves tangent vectors from the tangent space TyM to TzM in a smooth way and meanwhile
preserves the inner product.

A smooth vector bundle, denoted by π : E → M or simply E , consists of a base smooth
manifold M, a smooth manifold E called total space and a smooth bundle projection π , such
that for every p ∈ M, the fiber π−1(p) is a k-dimensional real vector space, and there is an
open neighborhood U ⊂ M of p and a diffeomorphism � : π−1(U) → U × R

k satisfying
the property that for all z ∈ U , (π ◦�−1)(z, v) = z for all v ∈ R

k and the map v �→ �−1(z, v)

is a linear isomorphism between R
k and π−1(z). The map � is called a local trivialization.

A prominent example of vector bundle is the space composed by the union of all tangent
spaces of a manifold, which is called the tangent bundle of the manifold, where the tangent
space at each point is a fiber. To identify different fibers, one can introduce a parallel transport
P on a vector bundle along a curve γ on the base manifold. Such parallel transport must
satisfy the following axioms: (1) P

p
p is the identity map on π−1(p) for all p ∈ M, (2)

P
γ (t)
γ (u) ◦ P

γ (u)
γ (s) = P

γ (t)
γ (s) and (3) the dependence of P on γ , s and t are smooth. The parallel

transport P introduced previously for a Riemannian manifold is indeed a parallel transport
on the tangent bundle. In Section 2.4, we shall construct a new type of vector bundle and a
parallel transport on it. If for each fiber in a smooth vector bundle there is an inner product and
the inner product smoothly varies from fiber to fiber, then the inner products are collectively
referred to as a smooth bundle metric. The aforementioned Riemannian metric is indeed a
smooth bundle metric on the tangent bundle.

2.2. Riemannian functional data. Functional data in which each function takes values
in a Riemannian manifold are termed Riemannian functional data and modeled by the Rie-
mannian random process (Lin and Yao (2019)). Specifically, let M be a d-dimensional Rie-
mannian manifold and X a M-valued random process indexed by a compact domain T ∈ R,
that is, X : T × � → M, where � is the sample space of the underlying probability space.
In reality, measurements of X are often corrupted by noise. To accommodate this common
practice, we assume that the actual observable process is Y , which is indexed by the same
domain T .

The process X is said to be of second order, if for each t ∈ T , F(p, t) = Ed2
M(X(t),p) <

∞ for some p ∈ M, and hence for all p ∈ M due to the triangle inequality. The minimizer
of F(p, t), if it exists, is called the Fréchet mean of X(t) and denoted by μ(t), that is,

(1) μ(t) := arg min
p∈M

F(p, t).

The concept of the Fréchet mean generalizes the mean from the Euclidean space to the Rie-
mannian manifold and plays an important role in analysis of data residing in a Riemannian
manifold. Under fairly general conditions, the Fréchet mean exists and is unique (Afsari
(2011), Bhattacharya and Patrangenaru (2003), Sturm (2003)), for instance, when the mani-
fold is of nonpositive sectional curvature (page 146, Lee (1997)) or data are located in a small
subspace of the manifold. Formally, we make the following assumption.

ASSUMPTION 2.1. The Fréchet mean functions of X and Y exist and are unique.

As the manifold M is not a vector space, it is challenging to directly study the processes
X and Y . A common strategy is to transform them into tangent spaces, in which the vector
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structure can facilitate the analysis, via Riemannian logarithmic maps. This requires an ad-
ditional assumption to ensure the well-posedness of the Riemannian logarithmic maps. For
simplicity, we assume the following sufficient condition, which can be relaxed by a delicate
formulation via cut locus.1

ASSUMPTION 2.2. There exists a geodesically convex2 subset Q ⊂ M such that
X(t), Y (t) ∈ Q for all t ∈ T .

If the manifold is of nonpositive sectional curvature, Q can be taken to be M, and thus the
above assumption becomes superfluous. Examples of manifolds of this kind include hyper-
bolic manifolds, tori and the space of symmetric positive-definite matrices endowed with the
affine-invariant metric (Moakher (2005)), Log-Euclidean metric (Arsigny et al. (2006/07))
or Log-Cholesky metric (Lin (2019)). An example Q for Riemannian manifolds of positive
sectional curvature is the hypersphere S

k = {(x0, . . . , xk) ∈ R
k+1 : x2

0 + · · · + x2
k = 1} or the

positive orthant Q = {(x0, . . . , xk) ∈ S
k : xj ≥ 0 for all j = 0, . . . , k}, which has applications

in compositional data analysis (Dai and Müller (2018)), where k is a positive integer.
Under Assumptions 2.1 and 2.2, the Riemannian logarithmic maps Logμ(t){X(t)} and

Logμ(t){Y(t)} are well defined. In addition, we can further model the observed process by

Y(t) = Expμ(t)

(
Logμ(t)

{
X(t)

} + ε(t)
)
,

where ε(t) ∈ Tμ(t)M represents the random noise in the tangent space, is independent of X

and satisfies Eε(t) = 0 and Expμ(t) ε(t) ∈ Q. With this setup, the mean functions of X and Y

are the same, in analogy to the Euclidean case; see Lemma 2.1 below.

LEMMA 2.1. If Assumptions 2.1 and 2.2 hold, and M is complete and simply connected,
then E{Logμ(·) X(·)} = 0. In addition, if Y(t) = Expμ(t)(Logμ(t) X(t) + ε(t)), where ε(t) ∈
Tμ(t)M is independent of X and satisfies Eε(·) = 0, then μ is also the Fréchet mean function
of Y .

Now we are ready to model sparsely observed Riemannian functional data. First, the sam-
ple functions X1, . . . ,Xn are considered as i.i.d. realizations of X however accessible are
their noisy copies Y1, . . . , Yn, rather than X1, . . . ,Xn. To further accommodate the practice
that functions are recorded at discrete points, we assume each Yi is only observed at mi

time points Ti,1, . . . , Ti,mi
∈ T . Specifically, the observed data are {(Tij , Yij ) ∈ T × M :

1 ≤ i ≤ n,1 ≤ j ≤ mi} with Yij = Expμ(Tij )(Logμ(Tij ){Xi(Tij )} + εij ), where the centered
random elements εij ∈ Tμ(Tij )M are independent of each other and also independent of
{Xi : 1 ≤ i ≤ n}.

2.3. Covariance function of Riemannian functional data. In addition to the Fréchet mean
function, the covariance structure of Riemannian functional data is essential for downstream
analysis, for instance, functional principal component analysis. In Lin and Yao (2019), the
covariance structure is modeled by the covariance operator of Logμ(·) X(·) from the random
element perspective (Chapter 7, Hsing and Eubank (2015)) and also by the covariance func-
tion of Logμ(·) X(·) with respect to a frame.3 The covariance operator is not computationally
friendly to sparse data, while the frame-dependent covariance function is not compatible with

1See Section 1 of the Supplementary Material (Shao, Lin and Yao (2022)) for a precise definition.
2A subset in a Riemannian manifold is geodesically convex if for any two points in the subset there is a unique

shortest geodesic that is contained in the subset and connects the points.
3See Section 1 of the Supplementary Material (Shao, Lin and Yao (2022)) for a precise definition.
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most smoothing methods; see Section 6 of the Supplementary Material (Shao, Lin and Yao
(2022)) for more details.

To develop a frame-independent intrinsic concept of the covariance function from the per-
spective of stochastic processes, we first revisit the covariance between two centered random
vectors U and V . When they are in a common Euclidean space, it is classically defined as
the matrix E(UV �). When U and V are in different general inner product spaces U and V,
a matrix representation of the covariance is definable if one picks an orthonormal basis for
each of U and V. To eliminate the dependence on the orthonormal bases, we take an opera-
tor perspective to treat the covariance C of U and V as a linear operator between U and V

characterized by

〈Cu,v〉V := E(〈U,u〉U〈V,v〉V), ∀u ∈ U, v ∈V,

where 〈·, ·〉U and 〈·, ·〉V denote the inner products of U and V, respectively. To simplify the
notation, we write C = E(U ⊗ V ).

Observe that Logμ(·) X(·) (Logμ X for short) is a random vector field along the curve
μ with E(Logμ X) = 0 according to Lemma 2.1 (also Theorem 2.1 of Bhattacharya and
Patrangenaru (2003)). Given that Logμ(s) X(s) ∈ Tμ(s)M and Logμ(t) X(t) ∈ Tμ(t)M, and
both Tμ(s)M and Tμ(t)M are Hilbert spaces, we define the covariance function for X by

(2) C(s, t) := E
{
Logμ(s) X(s) ⊗ Logμ(t) X(t)

}
, for (s, t) ∈ T 2.

This covariance function is clearly independent of any frame or coordinate system. This fea-
ture fundamentally and distinctly separates (2) from the frame-dependent covariance function
(5) defined in Lin and Yao (2019) for the coordinate of Logμ X with respect to a frame along
the mean function. Moreover, (2) can be viewed as the intrinsic covariance function of the
covariance operator C proposed in Lin and Yao (2019). Specifically, under some measurabil-
ity or continuity assumption on X and the condition that E

∫
T ‖Logμ(t) X(t)‖2

μ(t) < ∞, the
process Logμ X can be regarded as a random element in the Hilbert space

T (μ) :=
{
Z : Z(·) ∈ Tμ(·)M,

∫
T

〈
Z(t),Z(t)

〉2
μ(t) dt < ∞

}
endowed with the inner product 〈〈Z1,Z2〉〉μ := ∫

T 〈Z1(t),Z2(t)〉μ(t) dt for Z1,Z2 ∈ T (μ).
The covariance operator C : T (μ) → T (μ) for X can be defined by

(3) 〈〈Cu, v〉〉μ := E
(〈〈Logμ X,u〉〉μ〈〈Logμ X,v〉〉μ)

for u, v ∈ T (μ).

The following theorem, which generalizes Theorem 7.4.3 of Hsing and Eubank (2015) to
Riemannian random processes, shows that the proposed covariance function induces the co-
variance operator C.

THEOREM 2.1. Let C(·, ·) and C be defined in (2) and (3), respectively. Suppose that
X is mean-square continuous, that is, limk→∞ Ed2(X(tk),X(t)) = 0 for any t ∈ T and any
sequence {tk} in T converging to t . Also assume that X is jointly measurable, that is, X :
T × � → M is measurable with respect to the product σ -field on T × �, where � is the
sample space of the underlying probability space. Then under Assumptions 2.1 and 2.2, for
all t ∈ T and u ∈ T (μ), we have

(Cu)(t) =
∫
T
C(s, t)u(s)ds.

In light of this result, in the sequel we often use the same notation C to denote both the
covariance operator and the covariance function in (2). The proposed covariance function
enables estimating the covariance operator C through estimating C(s, t) for each (s, t) ∈ T ×
T in a frame-independent fashion. The frame-independent feature is of particular importance
to deriving a frame-invariant estimate in the more practical scenario that only discrete and
noisy observations are available so that smoothing is desirable; see Section 3 for more detail.
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FIG. 1. Illustration of the vector bundle L. The thick bending parallelogram presents the product manifold
M × M and the vertical lines represent fibers. The value of C(s, t) is located within the fiber L(μ(s),μ(s)) at
the point (μ(s),μ(t)) ∈M×M.

2.4. The vector bundle of covariance and parallel transport. To estimate the covariance
function in (2), it seems rather intuitive to perform smoothing over the raw covariance

(4) Ĉi,jk := Logμ̂(Tij ) Yij ⊗ Logμ̂(Tik)
Yik ∈ L

(
μ̂(Tij ), μ̂(Tik)

)
,

where μ̂ is an estimate of μ to be detailed in Section 3. The first challenge encountered is
that these raw observations Ĉi,jk do not reside in a common vector space. This also gives rise
to the second challenge in defining the key concept of smoothness of the function C and its
estimate. To circumvent these difficulties, we consider the spaces L(p, q) consisting of all
linear maps from TpM to TqM, and their disjoint union L= ⋃

(p,q)∈M2 L(p, q). Then Ĉi,jk

are encompassed by the space L, and in addition, the covariance function C is now viewed
as an L-valued function. Although the space L is not a vector space so that the smoothness
is not definable in the classic sense, we observe that L comes with a canonical smooth struc-
ture induced by the manifold M, and continuity, differentiability and smoothness relevant to
statistics can be defined with reference to this smooth structure as follows.

We first observe that L is a vector bundle on M×M, with π : L → M×M defined by
π(L(p, q)) = (p, q) being the bundle projection and L(p, q) being the fiber attached to the
point (p, q) ∈ M × M; see Figure 1 for a graphical illustration. To define the smoothness
structure on L induced by the manifold M, let {(Uα,φα) : α ∈ J } for an index set J be an
atlas of M. Recall that each chart (Uα,φα) gives rise to a smoothly varying basis of TpM
for each p ∈ Uα . Such basis is denoted by Bα,1(p), . . . ,Bα,d(p). For (p, q) ∈ Uα × Uβ ,
the tensor products Bα,j (p) ⊗ Bβ,k(q), j, k = 1, . . . , d , form a basis for the space L(p, q).
Each element v ∈ L(p, q) is then identified with its coefficients vjk with respect to this
basis, that is, v = ∑d

j,k=1 vjkBα,j (p) ⊗ Bβ,k(q). For each Uα × Uβ , we define the map

ϕα,β(p, q,
∑d

j,k=1 vjkBα,j (p) ⊗ Bβ,k(q)) = (φα(p),φβ(q), v11, v12, . . . , vdd) ∈ R
2d+d2

, for

(p, q) ∈ Uα × Uβ . The collection {(π−1(Uα × Uβ),ϕα,β) : (α,β) ∈ J 2} indeed is a smooth
atlas that turns L into a smooth manifold. Moreover, L is a smooth vector bundle with the pro-
jection map π and the local trivializations �α,β : π−1(Uα × Uβ) → Uα × Uβ ×R

d2
defined

as �α,β(p, q,
∑d

j,k=1 vjkBα,j (p) ⊗ Bβ,k(q)) = (p, q, v11, v12, . . . , vdd).

THEOREM 2.2. The collection {(π−1(Uα × Uβ),ϕα,β) : (α,β) ∈ J 2} is a smooth atlas
on L. With this atlas, L is a smooth vector bundle with the smooth projection map π and
smooth local trivializations �α,β . In addition, any compatible atlas of the manifold M gives
rise to the same smooth vector bundle L.
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With the above smooth structure, the covariance function C in (2), viewed as an L-valued
function, is said to be κ-times continuously differentiable in (s, t), if (μ(s),μ(t)) ∈ Uα ×Uβ

implies that ϕα,β(μ(s),μ(t),C(s, t)) is κ-times continuously differentiable in (s, t), where
we recall that {(π−1(Uα × Uβ),ϕα,β) : (α,β) ∈ J 2} is a smooth atlas on L. From this per-
spective, the constructed vector bundle L provides a framework to rigorously define the reg-
ularity of C. In this framework, estimating the covariance function C amounts to smoothing
the discrete raw observations Ĉi,jk in the vector bundle L.

Although the vector bundle L provides a qualitative framework for defining differentiabil-
ity or other smoothness regularity, it does not provide a quantitative characterization. Roughly
speaking, the smooth vector bundle L allows one to check whether C is differentiable or
smooth, but not to measure how rapidly C changes relative to (s, t). In other words, deriva-
tives that quantify the rate of change of the function C at a given pair (s, t) and that are
consistent across all compatible atlases for L require an additional structure as follows. We
first introduce the parallel transport on the covariance vector bundle L to identify different
fibers and to compare the elements from the fibers. Suppose that (p1, q1), (p2, q2) ∈ M×M
and γ (t) = (γp(t), γq(t)) is the shortest geodesic connecting (p1, q1) to (p2, q2). The parallel

transport P
(p2,q2)
(p1,q1)

from a fiber L(p1, q1) to another fiber L(p2, q2) is naturally constructed

from the parallel transport operators Pp1
p2 and Pq2

q1 on M by

(5)
(
P

(p2,q2)
(p1,q1)

C
)
(u) := Pq2

q1

(
C

(
Pp1

p2
u
))

,

where C ∈ L(p1, q1) and u ∈ Tp2M. To distinguish between the parallel transport on the
manifold and the one on the vector bundle L, notationally we use the caliligraphic symbol P
for the manifold while the script symbol P for the bundle. The parallel transport P further
determines a covariant derivative4 on the bundle.

THEOREM 2.3. For a tangent vector V of M×M at (p, q), the map ∇V defined by

(6) ∇V W := lim
h→0

P
γ (0)
γ (h)W(γ (h)) − W(γ (0))

h
:= d

dt
P

γ (0)
γ (t) W

(
γ (t)

) ∣∣∣∣
t=0

for all differentiable section W is a covariant derivative in the direction of V , where γ is a
smooth curve5 in M × M with initial point γ (0) = (p, q) and initial velocity γ ′(0) = V ,
and a section is any function W : M×M → L satisfying W(p,q) ∈ L(p, q) for all (p, q) ∈
M×M.

The covariant derivative of a section W can be viewed as the first derivative of the section.
It quantifies the rate and direction of change of W at each point in M × M. This applies
to the covariance function C since it can be viewed as a section along the surface μ × μ :
T × T → M×M. In addition, the “partial derivative” ∂

∂s
C(s, t)|s=s0 of C(s, t) with respect

to s at s0 can be understood as the limit

lim
h→0

P
γ (s0)
γ (s0+h)C(s0 + h, t) − C(s0, t)

h
∈ T(μ(s0),μ(t))M2

with γ (s) = (μ(s),μ(t)). Furthermore, since the derivative ∂
∂s
C(s, t) is again a section of the

vector bundle, one can define the partial derivatives of ∂
∂s
C(s, t), which can be regarded as

the second derivatives of C. Higher-order derivatives can be defined in a recursive way.

4For a definition of the covariant derivative, see Chapter 4 (specifically, page 50) of Lee (1997) or Section 1 of
the Supplementary Material (Shao, Lin and Yao (2022)).

5It can be shown that the value ∇V W depends on V , but not on γ .
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FIG. 2. Illustration of classic differentiation (left) and general covariant derivative (right).

To further illustrate the parallel transport and the induced covariant derivative on the vector
bundle π : L → M × M, consider a simple example in which M = R and the bundle L is
then parameterized by (x, y, z) ∈ R

2 × R. Let g : M × M → L be a smooth section. For
visualization, we fix y = 0 and write f (x) = g(x,0). For the smooth function f (x) shown in
Figure 2, the classic definition of the derivative of f (x) at x1 is

∂

∂x
f (x)

∣∣∣∣
x=x1

:= lim
x2→x1

f (x2) − f (x1)

x2 − x1
.

From the perspective of the vector bundle, each point x in the x-axis is attached with a fiber
Rx , which is simply a copy of the z-axis = R. Since f (x1) ∈ Rx1 while f (x2) ∈ Rx2 , the
operation f (x2) − f (x1) would not be well defined if we did not identify Rx1 with Rx2 . The
identification between Rx1 and Rx2 is canonical, and nothing else but parallelly transporting
Rx2 to Rx1 . This inspiring observation applies to general manifolds and covariant derivatives.
Specifically, the covariant derivative is defined by parallel transporting f (x2) from the fiber
Fx2 into the fiber Fx1 and then performing differentiation therein, that is,

∂

∂x
f (x)

∣∣∣∣
x=x1

:= lim
x2→x1

Px1
x2 (f (x2)) − f (x1)

x2 − x1
∈ Fx1 .

Finally, when smoothing the raw covariance function Ĉi,jk , one needs to quantify the
discrepancy between the data and the fit. Such discrepancy is often measured by a dis-
tance function or inner product on the data space. Fortunately, the vector bundle L comes
with a natural bundle metric. Specifically, for any (p, q) ∈ M × M, the metric G(p,q) :
L(p, q) ×L(p, q) →R is defined as the Hilbert–Schmidt inner product, that is,

(7) G(p,q)(L1,L2) =
d∑

k=1

〈L1ek,L2ek〉q for L1,L2 ∈ L(p, q),

where e1, . . . , ed denotes an orthonormal basis of TpM. One can show that the definition (7)
does not depend on the choice of the orthonormal basis. In fact, G is a smooth bundle metric
and the parallel transport (5) defines an isometry between any two fibers, as asserted by the
following result.

THEOREM 2.4. The metric defined in (7) is a vector bundle metric that smoothly varies
with (p, q) ∈ M×M and is preserved by the parallel transport in (5).

The inner product (7) is defined for linear operators that map a Hilbert space, such as
TpM, to another potentially different Hilbert space, such as TqM. The inner product of this
type, although mathematically well established (e.g., Definition 2.3.3 and Proposition B.0.7
by Prévôt and Röckner (2007)), is less seen in statistics; the commonly used one is usually
linear operators that map a Hilbert space into the same Hilbert space. The metric G also
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induces a norm, denoted by ‖ · ‖G(p,q) or simply ‖ · ‖G, on each fiber L(p, q). This norm in
turn defines a distance on each fiber L(p, q) by ‖A − B‖G(p,q) for A,B ∈ L(p, q), which is
an integrated part of the loss function in (8) for estimating the covariance function.

The smooth vector bundle L together with the covariant derivative (6) and the bundle
metric (7), termed covariance vector bundle in this paper, paves the way for estimation of
the covariance function (2) from sparsely observed Riemannian functional data. The smooth
structure and the covariant derivative together provide an intrinsic mechanism to quantify the
regularity of C. For example, it makes meaningful the statement that the second derivatives
of C(s, t) are continuous. In the Euclidean case, statements of this kind are often adopted as
assumptions that are fundamental to theoretical analysis of estimators derived from a smooth-
ing method. The developed vector bundle and covariant derivative now enable us to extend
such assumptions to the manifold setting, as demonstrated in Section 4.2 where we analyze
the theoretical properties of the proposed estimator in Section 3 for the covariance function
C. The parallel transport (5) and the bundle metric (7) allow an intrinsic measure of the dis-
crepancy of objects in the covariance vector bundle. Such measure is critical for finding an
estimator for C and quantifying estimation quality, as illustrated in the following sections.

3. Estimation. The first step is to estimate the mean function, for which we adopt the
local linear regression method proposed by Petersen and Müller (2019) and also employed
by Dai, Lin and Müller (2021). Define the local weight function

ŵ(Tij , t, hμ) = 1

σ̂ 2
0 (t)

Khμ(Tij − t)
{
û2(t) − û1(t)(Tij − t)

}
,

where ûk(t) = ∑
i λi

∑
j Khμ(Tij − t)(Tij − t)k , σ̂ 2

0 (t) = û0(t)û2(t) − û2
1(t) and Khμ(·) =

K(·/hμ)/hμ for a kernel function K with bandwidth hμ > 0. The estimate μ̂ is defined as
the minimizer of the weighted function

Q̂n(y, t) = ∑
1≤i≤n

λi

∑
1≤j≤mi

ŵ(Tij , t, h)d2
M(Yij , y),

that is,

μ̂(t) = arg min
y∈M

Q̂n(y, t),

where the weights {λi}1≤i≤n are subject-specific and satisfy
∑n

i=1 λimi = 1. For the Eu-
clidean case M =R, the objective function Q̂n(y, t) coincides with the sum of squared error
loss used in Zhang and Wang (2016). Two popular choices for λi are λi = (

∑n
i=1 mi)

−1 (Yao,
Müller and Wang (2005)) that assigns equal weight to each observation, and λi = (nmi)

−1

(Li and Hsing (2010)) that assigns equal weight to each subject. Other choices are discussed
in Zhang and Wang (2018).

Given the parallel transport introduced in Section 2.4, we are allowed to move the raw
covariance Ĉi,jk defined in (4) from different fibers into the same fiber and employ the classic
local linear smoothing on the transported observations. For Ĉi,jk to be well defined, similar
to Assumption 2.1, we assume the existence and uniqueness of the empirical mean function
μ̂ in the following Assumption 3.1. Such assumption always holds for manifolds of non-
positive sectional curvature, or may be replaced by a convexity condition on the distance
function when Assumption 2.2 holds. In particular, Assumption 3.1 is satisfied by the mani-
folds Sym+

AF and Sym+
LC of SPD matrices adopted in the simulation studies in Section 5 and

data application in Section 6 without additional conditions, as these manifolds have nonpos-
itive sectional curvature. The assumption also holds for the sphere S

2 used in the simulation
studies when Assumption 2.2 is fulfilled.
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ASSUMPTION 3.1. The estimated mean function μ̂(t) exists and is unique for each t ∈
T .

To estimate C(s, t), the nearby raw observations Ĉi,jk are parallelly transported into the
fiber L(μ̂(s), μ̂(t)), and the estimate Ĉ(s, t) is set by Ĉ(s, t) = β̂0 with

(8)

(β̂0, β̂1, β̂2) = arg min
β0,β1,β2∈L

(
μ̂(s),μ̂(t)

)
{∑

i

νi

∑
j �=k

∥∥P(μ̂(s),μ̂(t))

(μ̂(Tij ),μ̂(Tik))
Ĉi,jk − β0 − β1(Tij − s)

− β2(Tik − t)
∥∥2
G(μ̂(s),μ̂(t))KhC (s − Tij )KhC (t − Tik)

}
,

where hC > 0 is a bandwidth, P
(μ̂(s),μ̂(t))

(μ̂(Tij ),μ̂(Tik))
is the parallel transport along minimiz-

ing geodesics defined in (5), and the weights {νi}1≤i≤n are subject-specific and satisfy∑n
i=1 νimi(mi − 1) = 1. Similar to the estimation of the mean function, two popular choices

for the weights are νi = (
∑n

i=1 mi(mi − 1))−1 (Yao, Müller and Wang (2005)) that assign
equal weight to each observation, and νi = (nmi(mi − 1))−1 (Li and Hsing (2010)) that as-
sign equal weight to each subject, while more options are studied in Zhang and Wang (2018).

The objective function in (8) involves only intrinsic concepts and thus is fundamentally
different from the objective function in (5) of Dai, Lin and Müller (2021) in which the raw
observations Ĉi,jk are computed in an ambient space. In addition, the quantities Ĉi,jk in (8)
are frame-independent, and thus the resulting estimator is invariant to the frame.6 This frame-
independent feature makes our estimator distinct from the noninvariant estimators discussed
Section 6 of the Supplement (Shao, Lin and Yao (2022)).

REMARK 3.1. One might attempt to endow L with a distance ρ so that the estimation
is turned into a regression problem with a metric-space-valued response and the local linear
method of Petersen and Müller (2019) can be adopted. Such distance is expected to have the
following properties:

• The distance ρ on L coincides with the fiber metric G for any two points on the same fiber.
Specifically, for L1,L2 ∈ L(p, q), ρ2(L1,L2) = G(p,q)(L1 − L2,L1 − L2).

• The distance ρ on the zero section W0(p, q) = 0 ∈ L(p, q) coincides with the geodesic
distance on M×M. Specifically, for (p1, q1), (p2, q2) ∈ M×M, ρ(W0(p1, q1),W0(p2,

q2)) = dM2((p1, q1), (p2, q2)).
• When M is a Euclidean space, especially when M = R, the estimate derived from

Petersen and Müller (2019) under the distance ρ coincides with the classic estimate, that
is, the estimate derived from the same method but applied to the observations Ĉi,jk ∈ R

that are treated as real-valued responses.

However, such distance ρ does not exist. On one hand, the positive-definiteness of the dis-
tance suggests that ρ(Ĉi1,j1k1, Ĉi2,j2k2) �= 0 as long as Ĉi1,j1k1, Ĉi2,j2k2 ∈ L reside in different
fibers, that is, when μ̂(Ti1j1) �= μ̂(Ti2j2) or μ̂(Ti1k1) �= μ̂(Ti2k2). On the other hand, when
M = R, the quantities Ĉi1,j1k1 and Ĉi2,j2k2 are treated as real numbers and thus their distance
could be zero even when μ̂(Ti1j1) �= μ̂(Ti2j2) or μ̂(Ti1k1) �= μ̂(Ti2k2).

Once an estimate Ĉ of the covariance function C is obtained, according to Theorem 2.1,
the intrinsic Riemannian functional principal component proposed in Lin and Yao (2019) can

6For the computational purpose, a frame might be adopted, but the resulting estimator is independent of the
choice of the frame, since the objective function in (8) does not depend on any frame.
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be adopted. Specifically, the eigenvalues λ̂k and eigenfunctions ψ̂k of Ĉ can be obtained by
eigendecomposition of Ĉ, for example, via the method described in Section 2.3 of Lin and Yao
(2019). For estimation of the scores ξik = 〈〈Logμ Xi,ψk〉〉 in the intrinsic Karhunen–Loéve
expansion Logμ Xi = ∑∞

k=1 ξikψk proposed in Lin and Yao (2019), numerical approximation
to the integral Logμ Xi,ψj 〉〉 is infeasible when the data are sparse. In the Euclidean setting,
this issue is addressed by the technique of principal analysis through conditional expectation
(PACE, Yao, Müller and Wang (2005)). The technique was also adopted by Dai, Lin and
Müller (2021) for their ambient approach to Riemannian functional data analysis on sparsely
observed data. To adapt this technique in our intrinsic framework, for each Tμ̂(Tij )M, we fix
an orthonormal basis Bij,1, . . . ,Bij,d ; in Proposition 3.1, we will show that the computed
scores do not depend on the choice of the basis. Then the observations Logμ̂(Tij ) Yij and the

estimated eigenfunctions ψ̂k(Tij ) can be represented by their respective coordinate vectors
zij and gk,ij with respect to the basis. Similarly, the estimated covariance function Ĉ(Tij , Til)

at (Tij , Til) can be represented by a matrix Ci,j l of coefficients. By treating the vectors zij as
R

d -valued observations, the best linear unbiased predictor (BLUP) of ξik is given by

(9) ξ̂ik = λ̂kg
�
k,i�

−1
i zi,

where gk,i = (g�
k,i1, . . . , g

�
k,imi

)�, zi = (z�
i1, . . . , z

�
imi

)� and

�i = σ̂ 2I +

⎛
⎜⎜⎜⎝

Ci,11 Ci,12 · · · Ci,1mi

Ci,21 Ci,22 · · · Ci,2mi

...
...

. . .
...

Ci,mi1 Ci,mi2 · · · Ci,mimi

⎞
⎟⎟⎟⎠

with σ̂ 2 = ∑n
i=1

∑mi

j=1(ndmi)
−1tr{zij z

�
ij − Ĉ(Tij , Tij )}. The following invariance principle

shows that the scores ξ̂ik in (9) are invariant to the choice of bases Bij,1, . . . ,Bij,d . This
extends the invariance principle of Lin and Yao (2019) from the fully observed and/or dense
design to the sparse case.

PROPOSITION 3.1. The principal component scores ξ̂ik in (9) do not depend on the
choice of the orthonormal bases {(Bij,1, . . . ,Bij,d) : i = 1, . . . , n, j = 1, . . . ,mi}.

It remains to choose the bandwidths hμ and hC . Although the theoretical analysis in the
next section sheds light on how to choose them when the sample size is large, to determine
appropriate values for them when the sample is limited, we propose the following k-fold
cross-validation procedure. For an integer k ≥ 2, divide the subjects into k partitions, denoted
by P1, . . . ,Pk ⊂ {1, . . . , n}, of roughly even size. Let P−l = {1, . . . , n}\Pl for l = 1, . . . , k.
For a candidate value h of hμ, its cross-validation error is computed by

CV(h) =
k∑

l=1

∑
i∈Pj

mi∑
j=1

d2
M

(
μ̂h−l(Tij ), Yij

)
,

where μ̂h−l is the estimated mean function by using the bandwidth h and the data P−l . Among
a set of candidate values of hμ, the one with the minimal cross-validation error is selected.
A value for hC can be selected by the similar procedure. As demonstrated in Section 5, this
k-fold cross-validation procedure is numerically effective.
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4. Asymptotic properties. In the sequel, we assume m1 = · · · = mn = m for a clear
exposition; extension to more general cases is technically straightforward (Zhang and Wang
(2016)). There are two popular types of designs, namely, the random design in which the
design points Tij are i.i.d. sampled from a distribution, and the deterministic design in which
Tij are predetermined, and thus nonrandom. For the random design, the following assumption
is commonly adopted (Li and Hsing (2010), Yao, Müller and Wang (2005), Zhang and Wang
(2016)).

ASSUMPTION 4.1 (Random design). The design points Tij , independent of other ran-
dom quantities, are i.i.d. sampled from a distribution on T with a probability density that is
bounded away from zero and infinity.

In contrast, the deterministic design is less studied, especially the irregular deterministic
design; for instance, Cai and Yuan (2011) considers only a regular deterministic design. In
this paper, we consider a deterministic design with the following condition that basically
states that the design points are sufficiently irregular. To focus on longitudinal observations,
the regular design of a common grid case is studied Section 5 of the Supplement (Shao, Lin
and Yao (2022)), and is not included in the following condition.

ASSUMPTION 4.2 (Deterministic design). The design points Tij are nonrandom, and
there exist constants c2 ≥ c1 > 0, such that for any interval A,B ⊂ T and all n ≥ 1:

(a) sup1≤i≤n

∑m
j=1 1Tij∈A ≤ max{c2m|A|,1},

(b) c1nm|A| − 1 ≤ ∑
i,j 1Tij∈A ≤ max{c2nm|A|,1}, and

(c) c1nm2|A||B| − 1 ≤ ∑
i,j,k 1Tij∈A1Tik∈B ≤ max{c2nm2|A||B|,1},

where |A| denotes the length of A.

In many applications, the design points are neither completely random nor completely
predetermined. For example, in longitudinal studies the visit of a patient may take place
at a time that randomly deviates from the scheduled time. Such design includes both a
deterministic part and a random component, which is termed hybrid design in this pa-
per. Specifically, suppose all measurements are scheduled to take place in some of the
L predetermined points of T . Without loss of generality, we assume these predetermined
points are AL := {sk : 1 ≤ k ≤ L} with sk = k/(L + 1) and the set of all m-element sub-
sets of AL is Sm = {{t1, . . . , tm} : t1, . . . , tm ∈ AL are distinct}. There are m ≤ L measure-
ments scheduled at distinct time points Si := {Si1, . . . , Sim} ∈ Sm for each curve i. Instead
of Sij , the actual measurement takes place at Tij = Sij + ζij for some random variable
ζij ∈ (−1/(2L + 2),1/(2L + 2)). We postulate the following condition in which we em-
phasize that Si1, . . . , Sim are not independent, and thus neither are Ti1, . . . , Tim. In addition,
note that the condition also includes the special case that Si1, . . . , Sim are deterministic when
m = L.

ASSUMPTION 4.3 (Hybrid design).

(1) For each i = 1, . . . , n, Si1, . . . , Sim are m distinct elements randomly sampled (without
replacement) from AL. In addition, S1, . . . ,Sn are i.i.d. random subsets of AL and there are
positive constants c1, c2 such that c1|Sm|−1 ≤ Pr(S1 ∈ s) ≤ c2|Sm|−1 for all s ∈ Sm.

(2) ζij are i.i.d. centered random variables taking values in (−1/(2L + 2),1/(2L + 2))

and are independent of other random quantities. In addition, there exist universal positive
constants c3 and c4 such that the probability density fζ of ζ11 satisfies c3L ≤ infs fζ (s) ≤
sups fζ (s) ≤ c4L.
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Although these designs differ in nature, in the next two sections, we show that the estimator
with either of these designs, respectively, for the mean function and for covariance function,
achieves the same convergence rate under suitable regularity conditions.

4.1. Mean function. The pointwise convergence rate of the estimate μ̂(t) is established
in Petersen and Müller (2019), while the uniform convergence rate is derived by Dai, Lin and
Müller (2021). For completeness, we include them here, and establish a new local uniform
result that is needed in the theoretical analysis of the covariance estimator. First, we require
the following assumptions, where the condition 2 may be replaced with tail and moment
conditions on the distributions of Y and X at the cost of heavier technicalities. In addition, by
modifying our proofs, the compactness in the condition 4 can be replaced with a condition
on the decay rate of the kernel function when it moves away from zero, so that noncompact
kernels such as Gaussian kernel can be accommodated.

ASSUMPTION 4.4.

(1) The Riemannian manifold M is complete and simply connected.7

(2) There exists a compact subset of K ⊂M such that Pr{X(t), Y (t) ∈ K for all t ∈ T } =
1.

(3) The domain T is a compact interval.
(4) The kernel function K is Lipschitz continuous, symmetric, positive on (−1,1), com-

pactly supported on [−1,1] and monotonically decreasing on [0,1].

The following regularity on the mean function or related quantities is adapted from
Petersen and Müller (2019) and is specialized to the Riemannian manifold. Part 2 states
that the Fréchet mean is well separated from the other points in terms of the Fréchet function
F ∗(y, t) := Ed2

M(X(t), y), while part 3 basically amounts to convexity of F ∗(·, t) around
μ(t); they hold, for example, when the manifold has nonpositive curvature or the data suffi-
ciently concentrate on a geodesically convex region.

ASSUMPTION 4.5.

(1) The second partial derivative ∂2
t F ∗(y, t) is bounded on K × T .

(2) For any δ > 0,

inf
dM(y,μ(t))>δ

t∈T

{
F ∗(y, t) − F ∗(

μ(t), t
)}

> 0,

(3) There exist η1 > 0 and C1 > 0 such that for all t ∈ T and all y with dM(y,μ(t)) < η1,

F ∗(y, t) − F ∗(
μ(t), t

) − C1dM
(
y,μ(t)

)2 ≥ 0.

The following proposition, whose proof, as well as proofs for other results in this section,
is deferred to Sections 2, 3 and 4 of Supplement (Shao, Lin and Yao (2022)), states the point-
wise and uniform convergence rates of the estimated mean function, where the pointwise
rate is an immediate consequence of the local uniform rate stated in Proposition 4.2. The
condition nhμ � 1 in the following is only needed for the deterministic design.

7See Section 1 of the Supplement (Shao, Lin and Yao (2022)) for a precise definition of simple connectedness.
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PROPOSITION 4.1. Suppose that Assumptions 2.1, 2.2, 3.1, 4.4 and 4.5. Under either of
Assumptions 4.1, 4.2 and 4.3, if hμ → 0 and nmhμ → ∞, then for any fixed t ∈ T ,

d2
M

(
μ(t), μ̂(t)

) = Op

(
h4

μ + 1

n
+ 1

nmhμ

)
,

and if hμ → 0, nhμ � 1 and nmhμ/ logn → ∞, then

sup
t∈T

d2
M

(
μ(t), μ̂(t)

) = Op

(
h4

μ + logn

n
+ logn

nmhμ

)
.

To derive the pointwise convergence rate of the estimator Ĉ(s, t) in the next subsection,
we require a local convergence property of the estimator μ̂. The following Proposition 4.2,
which is new in the literature, shows that the local uniform convergence rate is the same as the
pointwise rate in Proposition 4.1, and differs from the global uniform convergence rate that
has an additional logn factor. The reason for this phenomenon is that E{Khμ(T − t)} = 1 at a
fixed-point t but E{supt∈T Khμ(T − t)} = 1/hμ → ∞. Therefore, the additional logn factor
is needed to offset this explosion in the case of global uniform convergence. In the local case,
if h = O(hμ), and thus E{supτ :|τ−t |≤h Khμ(T − τ)} = O(h/hμ) = O(1), then no offset is
required. The proposition also directly implies the pointwise rate in Proposition 4.1.

PROPOSITION 4.2. Suppose that Assumptions 2.1, 2.2, 3.1, 4.4 and 4.5 hold. Under
either of Assumptions 4.1, 4.2 and 4.3, if hμ → 0 and nmhμ → ∞, then for any fixed t and
h = O(hμ),

sup
τ :|τ−t |≤h

d2
M

(
μ(τ), μ̂(τ )

) = Op

(
h4

μ + 1

n
+ 1

nmhμ

)
.

4.2. Covariance function. We start with the following assumption on the regularity of the
covariance function C. As discussed in Section 2.4, such regularity condition in the manifold
setting is made precise and meaningful by the constructed covariance vector bundle L and
the covariant derivative ∇ in (6).

ASSUMPTION 4.6. The covariance function C is twice differentiable and its second
derivatives are continuous.

To study the asymptotic properties of the estimator Ĉ, one of the major challenges that
are not encountered in the Euclidean setting of Zhang and Wang (2016) or the ambient case
of Dai, Lin and Müller (2021) is to deal with the parallel transport in (8). It turns out that
we need to quantify the discrepancy between a tangent vector and the parallelly transported
one along a geodesic quadrilateral. We address this issue by the following lemma which
may be of independent interest. In particular, the proof of the lemma given in Section 3 of
the Supplement (Shao, Lin and Yao (2022)) utilizes holonomy theory that appears new in
statistical literature.

LEMMA 4.1. For a compact subset G ⊂ M, there exists a constant c > 0 depending only
on G, such that for all p1,p2, q1, q2, y ∈ G,∥∥Pp1

q1
Pq1

q2
Logq2

y −Pp1
p2

Logp2
y
∥∥
p1

≤ c
(
dM(p1, q1) + dM(p2, q2)

)
.

With the above regularity condition and lemma, the following theorem establishes the
pointwise convergence rate of Ĉ.
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THEOREM 4.1. Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5 and 4.6 hold. Under
either of Assumptions 4.1, 4.2 and 4.3, if hμ → 0, hC = O(hμ), and min{nmhμ,nm2h2

C} →
∞, then for any fixed s, t ∈ T ,

(10)
∥∥P(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)

∥∥2
G(μ(s),μ(t)) = Op

(
h4

μ + h4
C + 1

n
+ 1

nmhμ

+ 1

nm2h2
C

)
.

The rate in the above theorem matches the pointwise rate in the Euclidean setting of Zhang
and Wang (2016) in the case of mi = m. Unlike Zhang and Wang (2016), which assumes that
the mean function is known in their analysis, we do not need such assumption thanks to
the local uniform rate of the mean function stated in Proposition 4.2. In our analysis, the
local uniform rate cannot be replaced with the global uniform rate in Proposition 4.1 without
introducing an additional logn factor. Although the condition hC = O(hμ) is required in
order to utilize Proposition 4.2, it does not limit the convergence rate, as a proper choice of
hμ and hC leads to the following rates that still match the rates of Zhang and Wang (2016).

COROLLARY 4.1. Assume the conditions of Theorem 4.1.

(a) When m � n1/4 or m � n1/4, with hμ � hC � n−1/4, one has

∥∥P(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)

∥∥2
G(μ(s),μ(t))

= Op

(
1

n

)
.

(b) When m � n1/4, with hμ � hC � n−1/6m−1/3, one has

∥∥P(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)

∥∥2
G(μ(s),μ(t))

= Op

(
1

n2/3m4/3

)
.

Like the Euclidean case, a phase transition is observed at m � n1/4. With a proper choice
of hμ and hC , if m grows at least as fast as n1/4, it does not impact the convergence rate that
is at a parametric order of magnitude, that is, n−1/2. Otherwise, the sampling rate m becomes
an integrated part of the convergence rate of Ĉ. In particular, when m � n1/4, the choice
hμ � n−1/6m−1/3 is required to respect the condition hC = O(hμ). This choice is strictly
larger than the optimal choice hμ � (nm)−1/5 that is implied by Proposition 4.1 in the case of
m � n1/4. This suggests that oversmoothing in the mean function estimation may be needed
in order to reach the optimal pointwise rate of the covariance estimator when m � n1/4.
It is interesting to note that, in the literature if a lower-dimensional estimate depends on a
higher-dimensional one, undersmoothing the latter often helps the former to attain a better
rate. For instance, undersmoothing the two-dimensional covariance surface estimate leads to
a better rate of the one-dimensional eigenfunction estimates (Hall, Müller and Wang (2006)).
In contrast, the phenomenon in our case is reversed: the two-dimensional covariance function
estimate depends on the one-dimensional mean estimate, thus requires oversmoothing the
latter instead.

The following results establish the uniform convergence rate of the estimator Ĉ, where the
condition min{nhμ,nh2

C}� 1 is only needed for the deterministic design.

THEOREM 4.2. Suppose that Assumptions 2.1, 2.2, 3.1, 4.4, 4.5 and 4.6 hold. Un-
der either of Assumptions 4.1, 4.2 and 4.3, if max{hμ,hC} → 0, min{nhμ,nh2

C} � 1 and
min{nmhμ,nm2h2

C}/ logn → ∞, then

(11)

sup
(s,t)∈T 2

∥∥P(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)

∥∥2
G(μ(s),μ(t))

= Op

(
h4

μ + h4
C + logn

n
+ logn

nmhμ

+ logn

nm2h2
C

)
.
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COROLLARY 4.2. Assume the conditions of Theorem 4.2.

(a) When m � n1/4 or m � n1/4, with hμ � hC � n−1/4, one has

sup
(s,t)∈T 2

∥∥P(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)

∥∥2
G(μ(s),μ(t))

= Op

(
logn

n

)
.

(b) When m � n1/4, with hμ � n−1/5m−1/5(logn)1/5 and hC � n−1/6m−1/3(logn)1/6,
one has

sup
(s,t)∈T 2

∥∥P(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)

∥∥2
G(μ(s),μ(t))

= Op

(
(logn)2/3

n2/3m4/3

)
.

These rates again match the uniform rates in Zhang and Wang (2016). They also coincide
with the rates8 in Dai and Müller (2018). It is interesting to see that, when m � n1/4, the
choice of hμ in the corollary is the same as the optimal choice implied by Proposition 4.1,
which suggests that no oversmoothing is needed in order to reach the optimal uniform rate for
the covariance estimator Ĉ. This is because, the local uniform result of Proposition 4.2 and
thus the condition hC = O(hμ) are not required, as the role of Proposition 4.2 in the analysis
is now played by Proposition 4.1.

5. Simulation studies. We consider three different manifolds for illustrating the numer-
ical properties of the proposed covariance estimator (8) in Section 3; the numerical perfor-
mance of the mean estimator can be found in Dai, Lin and Müller (2021). Namely, they are
the two-dimensional unit sphere S2, the manifold Sym+

LC of symmetric positive-definite 2×2
matrices with the Log-Cholesky metric (Lin (2019)) and the manifold Sym+

AF of symmetric
positive-definite 2 × 2 matrices with the affine-invariant metric (Moakher (2005)), repre-
senting manifolds of positive, zero and negative sectional curvature, respectively. Note that
although Sym+

LC and Sym+
AF share the same collection of matrices, they are endowed with

different Riemannian metric tensors, and thus have fundamentally different Riemannian ge-
ometry. We set T = [0,1]. The sampling rate mi is randomly sampled from Poisson(m) + 2,
where Poisson(m) is a Poisson distribution with parameter m. Conditional on mi , the time
points Ti1, . . . , Timi

are i.i.d. sampled from the uniform distribution Uniform(0,1). The ran-
dom process X and its mean and covariance functions are described below.

Sphere S2. We parameterize S2 = {(x, y, z) ∈ R
3 : x2 +y2 +z2 = 1} by the polar coordinate

system

(12) x(u, v) = cos(u) sin(v), y(u, v) = cos(u) cos(v), z(u, v) = sin(u)

for the latitude u ∈ (−π/2, π/2) and longitude v ∈ [0,2π). This coordinate system also gives
rise to a local chart φ : U → (−π/2, π/2) × [0,2π) on V = S

2\{(0,0,−1), (0,0,1)}. Let
B1(t) = ∂φ

∂u
and B2(t) = ∂φ

∂v
. The random process X is then given by

X(t) = Expμ(t)

(
tZ1B1(t) + tZ2B2(t)

)
with Z1,Z2

i.i.d.∼ Uniform(−0.1,0.1). The mean curve μ of X is μ(t) = φ(0, πt/2) =
(sin(πt/2), cos(πt/2),0), which lies on the equator. The covariance function is C(s, t) =
st

300 I2 under the frame (B1,B2), where I2 denotes the 2 × 2 identity matrix. The contami-
nated observations are

Yij = Expμ(Tij )

{
(TijZ1i + υij1)B1(Tij ) + (TijZ2i + υij2)B2(Tij )

}
,

8Note that the extra term 1/(nmhC) in Dai and Müller (2018) is dominated by 1/n + 1/(nm2h2
C) due to the

inequality of arithmetic and geometric means, that is,
√

ab ≤ (a + b)/2.
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where Z1i ,Z2i
i.i.d.∼ Uniform(−0.1,0.1) and υij1, υij2

i.i.d.∼ Uniform(−a, a) with a > 0 cho-
sen to make SNR = 5 defined by

(13) SNR := E
∫
T ‖Logμ(t) X(t)‖2

μ(t) dt

E
∫
T ‖ε(t)‖2

μ(t) dt
.

Manifold Sym+
LC . We parameterize Sym+

LC by the chart

φ : (u, v,w) →
(

e2u weu

weu w2 + e2v

)
,

which induces the orthogonal frame formed by B1(t) = ∂φ
∂u

, B2(t) = ∂φ
∂v

and B3(t) = ∂φ
∂w

. The
random process X is set to be

X(t) = Expμ(t)

(
tZ1B1(t) + tZ2B2(t) + tZ3B3(t)

)

=
(

et+tZ1 0
t + tZ3 et+tZ2

)(
et+tZ1 t + tZ3

0 et+tZ2

)

with Z1,Z2,Z3
i.i.d.∼ Uniform(−0.1,0.1). The mean curve μ is a geodesic with

μ(t) = φ(t, t, t) =
(
e2t tet

tet t2 + e2t

)

and the covariance function is C(s, t) = st
300I3 under the frame (B1,B2,B3). With ε(Tij ) =

υij1B1(Tij ) + υij2B2(Tij ) + υij3B3(Tij ) ∈ Tμ(Tij )M, the contaminated observations are

Yij =
(

eTij+TijZ1i+υij1 0
Tij + TijZ3i + υij3 eTij+TijZ2i+υij2

)(
eTij+TijZ1i+υij1 Tij + TijZ3i + υij3

0 eTij+TijZ2i+υij2

)
,

where Z1i ,Z2i ,Z3i
i.i.d.∼ Uniform(−0.1,0.1) and υij1, υij2, υij3

i.i.d.∼ Uniform(−a, a) with
a > 0 set to satisfy SNR = 5 defined in (13).

Manifold Sym+
AF . We parameterize Sym+

AF by the chart

φ : (u, v,w) →
(
eu w

w ev

)

which gives rise to the frame formed by B1(t) = ∂φ
∂u

, B2(t) = ∂φ
∂v

and B3(t) = ∂φ
∂w

. The random
process X(t) is set to

X(t) =

⎛
⎜⎜⎝

1

4
et+tZ1 + 3

4
et+tZ2

√
3

4
et+tZ1 −

√
3

4
et+tZ2

√
3

4
et+tZ1 −

√
3

4
et+tZ2

3

4
et+tZ1 + 1

4
et+tZ2

⎞
⎟⎟⎠ ,

for Z1,Z2
i.i.d.∼ Uniform(−0.1,0.1). The mean function is μ(t) = etI2 while the covariance

function is C(s, t) = diag{st/300, st/300,0} under the frame (B1,B2,B3), providing an il-
lustration on covariance structure of nonfull rank. With ε(Tij ) = υij1B1(Tij )+υij2B2(Tij ) ∈
Tμ(Tij )M, the contaminated observations are

Yij =

⎛
⎜⎜⎝

1

4
eTij +Tij Z1i+υij1 + 3

4
eTij +Tij Z2i+υij2

√
3

4
eTij +Tij Z1i+υij1 −

√
3

4
eTij +Tij Z2i+υij2

√
3

4
eTij +Tij Z1i+υij1 −

√
3

4
eTij +Tij Z2i+υij2

3

4
eTij +Tij Z1i+υij1 + 1

4
eTij +Tij Z2i+υij2

⎞
⎟⎟⎠ ,
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TABLE 1
rMUIE and its Monte Carlo standard errors under different settings in percentage (%)

Manifold n rMUIE

m = 5 m = 10 m = 20 m = 30

S
2 100 35.40 (17.50) 27.60 (12.43) 18.97 (7.53) 17.69 (10.91)

200 26.36 (12.26) 20.72 (13.79) 14.94 (6.07) 13.85 (4.75)

400 18.04 (8.78) 12.47 (4.41) 10.48 (2.52) 8.30 (4.19)

Sym+
LC 100 41.58 (13.24) 36.70 (37.70) 25.44 (8.42) 22.10 (5.56)

200 30.36 (10.41) 22.05 (6.51) 20.89 (7.14) 15.51 (3.52)

400 24.15 (12.30) 14.55 (5.13) 12.47 (4.85) 12.09 (2.46)

Sym+
AF 100 35.40 (17.50) 27.60 (12.43) 18.97 (7.53) 18.77 (7.24)

200 26.35 (12.26) 20.72 (13.79) 14.94 (6.05) 13.85 (4.75)

400 18.04 (8.78) 12.49 (4.40) 10.48 (2.52) 8.30 (4.19)

where Z1i ,Z2i ,Z3i
i.i.d.∼ Uniform(−0.1,0.1) and υij1, υij2

i.i.d.∼ Uniform(−a, a) with a > 0
set to satisfy SNR = 5 defined in (13).

We consider different sample sizes and sampling rates, namely, n = 100,200,400 and
m = 5,10,20,30. Each simulation is repeated independently 100 times. The kernel adopted
is the tricube kernel defined by K(u) = 70(1 − |u|3)3/81, and the bandwidths hμ and hC
are selected by the two-fold cross-validation procedure described in Section 3. Estimation
quality is measured by relative mean uniform integrated error (rMUIE) and relative root mean
integrated squared error (rRMISE), defined by

(14)

rMUIE := E sups,t∈T ‖P
(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)‖G

sups,t∈T ‖C(s, t)‖G

,

rRMISE := {E ∫
T 2 ‖P(μ(s),μ(t))

(μ̂(s),μ̂(t))
Ĉ(s, t) − C(s, t)‖2

G ds dt}1/2

{∫T 2 ‖C(s, t)‖2
G ds dt}1/2

.

The results, summarized in Tables 1 and 2, show that the estimation errors in terms of
both rMUIE and rRMISE in percentage decrease as n or m increases, and thus demonstrate
the effectiveness of the proposed estimation method. A phase transition phenomenon is also

TABLE 2
rRMISE and its Monte Carlo standard errors under different settings in percentage (%)

Manifold n rRMISE

m = 5 m = 10 m = 20 m = 30

S
2 100 24.22 (8.70) 20.63 (7.97) 16.10 (6.11) 15.68 (6.73)

200 17.16 (5.73) 14.00 (6.14) 12.10 (4.48) 11.89 (4.55)

400 11.99 (4.45) 9.29 (3.03) 8.81 (1.81) 6.90 (3.49)

Sym+
LC 100 29.52 (7.20) 25.98 (12.15) 21.66 (6.63) 19.01 (2.98)

200 21.13 (5.19) 16.27 (3.81) 18.99 (6.05) 13.95 (2.94)

400 16.29 (4.33) 11.04 (2.54) 10.99 (4.33) 10.08 (2.37)

Sym+
AF 100 24.22 (8.70) 20.63 (7.97) 16.10 (6.11) 15.37 (5.75)

200 17.16 (5.73) 14.00 (6.14) 13.21 (4.96) 11.89 (4.55)

400 11.99 (4.45) 10.55 (3.55) 9.81 (1.81) 6.90 (3.49)
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observed: When m is increased from 5 to 10 or 20, the errors in terms of both rMUIE and
rRMISE decrease substantially, while when m is further increased to 30, the decrease in
errors is marginal. This phenomenon, hinted by our theoretical analysis in Section 4, suggests
that for a fixed sample size, when m = 5 or m = 10 the errors are primarily due to the low
sampling rate m, while when m = 30 or higher the errors are mainly contributed by the
sample size.

To numerically verify that the proposed framework is invariant to parameterization, we
also computed the estimates with a different parameterization of the manifolds in the above.
Specifically, we considered the following additional parameterization called stereographic
projection:

(15) ϕ : (u, v) ∈ R
2 →

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
∈ S

2

for the sphere S
2, parameterizing the matrices generated in the setting of Sym+

LC by their
lower triangular parts instead of their Cholesky factors, and parameterizing the matrices in the
setting of Sym+

AF by their Cholesky factors instead of their lower triangular parts. In addition,
to verify that the results are invariant to frames, for each setting, we consider two sets of
randomly selected frames for computation. We then found that identical results were obtained
under different choices of parameterization and/or frames. This numerically demonstrates
that the proposed framework and method are invariant to parameterization and the choice of
frames. In addition, the manifold Sym+

AF does not have a canonical embedding. As a matter
of fact, we did not employ an embedding for any of the above manifolds in our studies,
demonstrating the intrinsicality of the proposed framework.

6. Application to longitudinal diffusion tensors. We apply the proposed framework
to analyze longitudinal diffusion tensors from Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). For up-to-date information, see www.adni-info.org.

Diffusion tensor imaging (DTI), a special kind of diffusion-weighted magnetic resonance
imaging, has been extensively adopted in brain science to investigate white matter tractogra-
phy. In a DTI image, each brain voxel is associated with a 3 × 3 symmetric positive-definite
matrix, called diffusion tensor, that characterizes diffusion of water molecules in the voxel. As
diffusion of water molecules carries rich information about axons, diffusion tensor imaging
has important applications in both clinical diagnostics and scientific research related to brain
diseases. From a statistical perspective, diffusion tensors are modeled as random elements in
Sym+

� (3), and have been studied extensively, such as Arsigny et al. (2006), Dryden, Koloy-
denko and Zhou (2009), Fillard et al. (2005), Fletcher and Joshi (2007), Lenglet et al. (2006),
Pennec (2020), Pennec, Fillard and Ayache (2006), Zhu et al. (2009), among many others. In
these works Sym+

� (3) is endowed with a Riemannian metric or a non-Euclidean distance that
aims to alleviate or completely eliminate swelling effect (Arsigny et al. (2006/07)). However,
none of them consider the longitudinal aspect of diffusion tensors.

We focus on the hippocampus, a brain region that plays an important role in memory and
is central to Alzheimer’s disease (Lindberg et al. (2012)), and include in the study subjects
with at least four properly recorded DTI images. This results in a sample of n = 177 subjects
with age ranging from 55.2 to 93.5. Among them, 42 subjects are cognitively normal (CN),
while the others (AD) developed one of early mild cognitive impairment, mild cognitive

http://www.adni-info.org
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FIG. 3. Mean functions. Top: AD group; bottom: CN group. The color encodes fractional anisotropy.

impairment, late mild cognitive impairment and Alzheimer’s disease. On average, there are
m = 5.5 DTI scans for each subject, which shows that the data are rather sparsely recorded. A
standard procedure that includes denoising, eddy current and motion correction, skull strip-
ping, bias correction and normalization is adopted to preprocess the raw images. Based on the
preprocessed DTI images, diffusion tensors are derived. We endow Sym+

� (3) with the Log-
Cholesky metric (Lin (2019)) and turn it into a Riemannian manifold of nonpositive sectional
curvature. Under the Log-Cholesky framework that avoids swelling effect and meanwhile en-
joys computational efficiency, the Fréchet mean of the tensors inside hippocampus is calcu-
lated for each DTI scan, which represents a coarse-grain summary of hippocampal diffusion
tensors. As we shall see below, this averaged mean tensor is already capable of illuminating
some differences of the diffusion dynamics between the AD and CN groups.

The estimated Fréchet mean trajectories are depicted in Figure 3 with the bandwith 4.2
for the AD group and 5.7 for the CN group, where each tensor is visualized as an ellipsoid
whose volume corresponds to the determinant of the tensor. They suggest that, overall the
averaged hippocampal diffusion tensor remains rather stable for the CN group; the tensors
at age 55.2 and 93.5 that markedly depart from the others could be due to boundary effect,
that is, there are relatively less data around the two boundary time points. In contrast, for the
AD group, the dynamic tensor varies more substantially, and the diffusion (measured by the
determinant of tensors and indicated by volume of ellipsoids) seems larger. Also, the mean
trajectory of the AD group exhibits slightly lower fractional anisotropy at each time point.
Fractional anisotropy, defined for each 3 × 3 symmetric positive-definite matrix A by

FA =
√√√√3

2

(ρ1 − ρ̄)2 + (ρ2 − ρ̄)2 + (ρ3 − ρ̄)2

ρ2
1 + ρ2

2 + ρ2
3

,

where ρ1, ρ2, ρ3 are eigenvalues of A and ρ̄ = (ρ1 + ρ2 + ρ3)/3, describes the degree of
anisotropy of diffusion of water molecules. It is close to zero unless movement of the wa-
ter molecules is constrained by structures such as white matter fibers. The below-normal
fractional anisotropy might suggest some damage on the hippocampal structure for the AD
group.

For the covariance function, Figure 4 shows the first three intrinsic Riemannian functional
principal components that are mapped on Sym+

� (3) via the Riemannian exponential maps
Expμ̂(t), where the bandwidth is 3.5 for the AD group and 4.5 for the CN group. They re-
spectively account for 40.2%, 22.2% and 7.0% of variance for the AD group, and 40.7%,
19.4% and 8.0% of variance for the CN group. These components, compared side by side
in Figure 4, exhibit different patterns between the two cohorts. For instance, the Riemannian
functional principal components of the AD group show relatively larger diffusion and more
dynamics over time. In addition, they exhibit relatively lower fractional anisotropy, which
suggests that individual diffusion tensor trajectories in the AD group tend to deviate from
their mean trajectory along the direction with below-normal fractional anisotropy.
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FIG. 4. The first principal component of AD group (row 1) and CN group (row 2), the second principal compo-
nent of AD group (row 3) and CN group (row 4), and the third principal component of AD group (row 5) and CN
group (row 6). The color encodes fractional anisotropy.

We conclude this section by the following remarks. Note that, in the above analysis, the av-
eraged hippocampal diffusion tensors do not capture the rich spatial information of all tensors
within the hippocampus. To account for such information, all hippocampal diffusion tensors
shall be taken into consideration by being modeled as an Sym+

� (3)-valued function defined
on the hippocampal region, which is a three-dimensional domain of R3. Along with the tem-
poral dynamics, for each subject there are spatiotemporal Riemannian manifold-valued data,
with the sparseness along the temporal direction. Our framework can be extended to analyze
such data, but the extension requires substantial development and is left for future study.

In addition, each of the sparse trajectories is only observed in an individual-specific period
shorter than the span (93.6 − 55.2 = 38.4 years) of the entire study. Functional data of this
feature, called functional fragments (Delaigle et al. (2021), Descary and Panaretos (2019))
or functional snippets (Lin, Wang and Zhong (2021)), require special treatment on estimat-
ing the covariance structure. Particularly, local smoothing techniques can only estimate the
diagonal region of the covariance function for such data, and thus require the additional as-
sumption that the covariance function is supported in the diagonal region, as we have done
implicitly in the above analysis. Extension of the estimation method proposed in this paper
to functional fragments/snippets is nontrivial, and thus also left for future study.
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